Title of Document : ELECTRONIC TRANSPORT IN DIRAC MATERIALS : GRAPHENE AND A TOPOLOGICAL INSULATOR

نویسندگان

  • Michael S. Fuhrer
  • Sungjae Cho
چکیده

Title of Document: ELECTRONIC TRANSPORT IN DIRAC MATERIALS: GRAPHENE AND A TOPOLOGICAL INSULATOR(Bi2Se3) Sungjae Cho, Doctor of Philosophy, 2011 Directed By: Professor, Michael S. Fuhrer, Department of Physics Materials with Dirac electronic spectra (“Dirac materials”) have attracted much interest since the first successful electronic transport measurement in graphene in 2004. Dirac quasiparticles have novel physical properties such as absence of backscattering and Klein tunneling. Topological insulators are a more recently discovered class of materials that have a bulk band gap and gapless edge/surface states. The surface state in 3D topological insulators has a Dirac electronic spectrum like graphene, but is singly spin-degenerate, with spin-momentum locking. This thesis will describe electronic transport experiments in graphene and in Bi2Se3 ultrathin films, which are predicted to be either 2D topological insulators or conventional insulators. The basic quantum physics of a particle confined in a box is demonstrated using electrons in single and bilayer graphene as examples of massless and massive 2D Fermions, respectively. Ballistic metal-graphene-metal devices act as FabryPérot cavities for electrons, and resonant states of the Fabry-Pérot cavity observed in electronic transport are used to measure the density of states as a function of particle number for massless and massive 2D Fermions. Nonlocal spin-valve experiments are demonstrated up to room temperature in mesoscopic graphene contacted by ferromagnetic electrodes. At low temperature the spin-valve signal shows changes in magnitude and sign with back-gate voltage, which may also result from quantumcoherent transport through Fabry Pérot cavities. The temperatureand magnetic-field-dependent longitudinal (ρxx) and Hall(ρxy) components of the resistivity of graphene were measured. Near the minimum conductivity point ρxx(H) is strongly enhanced and ρxy(H) is suppressed, indicating nearly equal electron and hole contributions to the current. The data are inconsistent with the standard two-fluid model, but consistent with the prediction for inhomogeneously distributed electron and hole regions of equal mobility. Ultrathin three quintuple layer (3QL) Bi2Se3 field effect transistors (FETs) were fabricated by mechanical exfoliation on 300 nm SiO2/Si susbtrates. Temperature and gate-voltage-dependent conductance measurements show a clear OFF state at negative gate voltage, with activated temperature-dependent conductance and energy barriers up to 250 meV, implying that 3QL-Bi2Se3 films are conventional insulators rather than 2D topological insulators, likely due to coupling of the topological surface states through the thin bulk. ELECTRONIC TRANSPORT IN DIRAC MATERILAS: GRAPHENE AND A TOPOLOGICAL INSULATOR(Bi2Se3)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method

We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...

متن کامل

Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator

Electrons with a linear energy/momentum dispersion are called massless Dirac electrons and represent the low-energy excitations in exotic materials such as graphene and topological insulators. Dirac electrons are characterized by notable properties such as a high mobility, a tunable density and, in topological insulators, a protection against backscattering through the spin-momentum locking mec...

متن کامل

Terahertz conductivity of topological surface states in Bi1.5Sb0.5Te1.8Se1.2

Topological insulators are electronic materials with an insulating bulk and conducting surface. However, due to free carriers in the bulk, the properties of the metallic surface are difficult to detect and characterize in most topological insulator materials. Recently, a new topological insulator Bi₁.₅Sb₀.₅Te₁.₇Se₁.₃ (BSTS) was found, showing high bulk resistivities of 1-10 Ω.cm and greater con...

متن کامل

Superluminal tachyon-like excitations of Dirac fermions in a topological insulator junction

We have considered a system of two topological insulators and have determined the properties of the surface states at the junction. Here we report that these states, under certain conditions exhibit superluminous (tachyonic) dispersion of the Dirac fermions. Although superluminal excitations are known to exist in optical systems, this is the first demonstration of possible tachyonic excitations...

متن کامل

Beyond the constant-mass Dirac physics: Solitons, charge fractionization, and the emergence of topological insulators in graphene rings

The doubly connected polygonal geometry of planar graphene rings is found to bring forth topological configurations for accessing nontrivial relativistic quantum field (RQF) theory models that carry beyond the constant-mass Dirac-fermion theory. These include the generation of sign-alternating masses, solitonic excitations, and charge fractionization. The work integrates a RQF Lagrangian formul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011